152 research outputs found

    Key stages in mammary gland development: The mammary end bud as a motile organ

    Get PDF
    In the rodent, epithelial end buds define the tips of elongating mammary ducts. These highly motile structures undergo repeated dichotomous branching as they aggressively advance through fatty stroma and, turning to avoid other ducts, they finally cease growth leaving behind the open, tree-like framework on which secretory alveoli develop during pregnancy. This review identifies the motility of end buds as a unique developmental marker that represents the successful integration of systemic and local mammotrophic influences, and covers relevant advances in ductal growth regulation, extracellular matrix (ECM) remodeling, and cell adhesion in the inner end bud. An unexpected growth-promoting synergy between insulin-like growth factor-1 and progesterone, in which ducts elongate without forming new end buds, is described as well as evidence strongly supporting self-inhibition of ductal elongation by end-bud-secreted transforming growth factor-β acting on stromal targets. The influence of the matrix metalloproteinase ECM-remodeling enzymes, notably matrix metalloproteinase-2, on end bud growth is discussed in the broader context of enzymes that regulate the polysaccharide-rich glycosaminoglycan elements of the ECM. Finally, a critical, motility-enabling role for the cellular architecture of the end bud is identified and the contribution of cadherins, the netrin/neogenin system, and ErbB2 to the structure and motility of end buds is discussed

    Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.

    Get PDF
    A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions

    Manual therapies for migraine: a systematic review

    Get PDF
    Migraine occurs in about 15% of the general population. Migraine is usually managed by medication, but some patients do not tolerate migraine medication due to side effects or prefer to avoid medication for other reasons. Non-pharmacological management is an alternative treatment option. We systematically reviewed randomized clinical trials (RCTs) on manual therapies for migraine. The RCTs suggest that massage therapy, physiotherapy, relaxation and chiropractic spinal manipulative therapy might be equally effective as propranolol and topiramate in the prophylactic management of migraine. However, the evaluated RCTs had many methodological shortcomings. Therefore, any firm conclusion will require future, well-conducted RCTs on manual therapies for migraine

    Neogenin expression may be inversely correlated to the tumorigenicity of human breast cancer

    Get PDF
    BACKGROUND: Neogenin is expressed in cap cells that have been suggested to be mammary stem or precursor cells. Neogenin is known to play an important role in mammary morphogenesis; however its relationship to tumorigenesis remains to be elucidated. METHODS: To compare the expression levels of neogenin in cells with different tumorigenicity, the expression levels in M13SV1, M13SV1R2 and M13SV1R2N1 cells, which are immortalized derivatives of type I human breast epithelial cells, were evaluated. Then we measured the expression level of neogenin in paired normal and cancer tissues from eight breast cancer patients. Tissue array analysis was performed for 54 human breast tissue samples with different histology, and the results were divided into four categories (none, weak, moderate, strong) by a single well-trained blinded pathologist and statistically analyzed. RESULTS: The nontumorigenic M13SV1 cells and normal tissues showed stronger expression of neogenin than the M13SV1R2N1 cells and the paired cancer tissues. In the tissue array, all (8/8) of the normal breast tissues showed strong neogenin expression, while 93.5% (43/46) of breast cancer tissues had either no expression or only moderate levels of neogenin expression. There was a significant difference, in the expression level of neogenin, in comparisons between normal and infiltrating ductal carcinoma (p < 0.001). CONCLUSION: Neogenin may play a role in mammary carcinogenesis as well as morphogenesis, and the expression may be inversely correlated with mammary carcinogenicity. The value of neogenin as a potential prognostic factor needs further evaluation

    WT1 gene expression as a prognostic marker in advanced serous epithelial ovarian carcinoma: an immunohistochemical study

    Get PDF
    BACKGROUND: WT1 is a tumor suppressor gene responsible for Wilms' tumor. WT1 reactivity is limited to ovarian serous carcinomas. Recent studies have shown that WT1 plays an important role in the progression of disease and indicates a poorer prognosis of human malignancies such as acute myeloid leukemia and breast cancer. The aims of this study were to determine the survival and recurrence-free survival of women with advanced serous epithelial ovarian carcinoma in relation to WT1 gene expression. METHODS: The study accrued women over an 18-year period, from 1987–2004. During the study period, 163 patients were diagnosed with advanced serous epithelial ovarian carcinoma and had undergone complete post-operative chemotherapy, but the final study group comprised 99 patients. The records of these women were reviewed and the paraffin-embedded tissue of these women stained with WT1 immunostaining. Survival analysis was performed using Kaplan-Meier and Cox regression methods. RESULTS: Fifty patients showed WT1 staining and forty-nine did not. Five-year survival of non-staining and staining groups were 39.4% and 10.7% (p < 0.00005); five-year recurrence-free survival of these groups were 29.8% and ≤ 7.5% (p < 0.00005), respectively. For survival the HR of WT1 staining, adjusted for residual tumor and chemotherapy response, was 1.98 (95% CI 1.28–3.79), and for recurrence-free survival the HR was 3.36 (95% CI 1.60–7.03). The HR for recurrence-free survival was not confounded by any other variables. CONCLUSION: This study suggests that expression of WT1 gene may be indicative of an unfavorable prognosis in patients with advanced serous epithelial ovarian carcinoma

    Short term culture of breast cancer tissues to study the activity of the anticancer drug taxol in an intact tumor environment

    Get PDF
    BACKGROUND: Sensitivity of breast tumors to anticancer drugs depends upon dynamic interactions between epithelial tumor cells and their microenvironment including stromal cells and extracellular matrix. To study drug-sensitivity within different compartments of an individual tumor ex vivo, culture models directly established from fresh tumor tissues are absolutely essential. METHODS: We prepared 0.2 mm thick tissue slices from freshly excised tumor samples and cultivated them individually in the presence or absence of taxol for 4 days. To visualize viability, cell death, and expression of surface molecules in different compartments of non-fixed primary breast cancer tissues we established a method based on confocal imaging using mitochondria- and DNA-selective dyes and fluorescent-conjugated antibodies. Proliferation and apoptosis was assessed by immunohistochemistry in sections from paraffin-embedded slices. Overall viability was also analyzed in homogenized tissue slices by a combined ATP/DNA quantification assay. RESULTS: We obtained a mean of 49 tissue slices from 22 breast cancer specimens allowing a wide range of experiments in each individual tumor. In our culture system, cells remained viable and proliferated for at least 4 days within their tissue environment. Viability of tissue slices decreased significantly in the presence of taxol in a dose-dependent manner. A three-color fluorescence viability assay enabled a rapid and authentic estimation of cell viability in the different tumor compartments within non-fixed tissue slices. CONCLUSION: We describe a tissue culture method combined with a novel read out system for both tissue cultivation and rapid assessment of drug efficacy together with the simultaneous identification of different cell types within non-fixed breast cancer tissues. This method has potential significance for studying tumor responses to anticancer drugs in the complex environment of a primary cancer tissue

    The zinc finger domain of Wilms' tumor 1 suppressor gene (WT1) behaves as a dominant negative, leading to abrogation of WT1 oncogenic potential in breast cancer cells

    Get PDF
    Abstract Introduction There is growing evidence that the Wilms' tumor 1 suppressor gene (WT1) behaves as an oncogene in some forms of breast cancer. Previous studies have demonstrated that the N-terminal domain of WT1 can act as a dominant negative through self-association. In the studies presented here we have explored the potential for the zinc finger domain (ZF) of WT1 to also have dominant-negative effects, and thus further our understanding of this protein. Methods Using full-length and ZF-only forms of WT1 we assessed their effect on the WT1 and c-myc promoter using luciferase and chromatin immunoprecipitation assays. The gene expression levels were determined by quantitative real-time RT-PCR, northern blot and western blot. We also assessed the effect of the ZF-only form on the growth of breast cancer cell lines in culture. Results Transfection with WT1–ZF plasmids resulted in a stronger inhibition of WT1 promoter than full-length WT1 in breast cancer cells. The WT1–ZF form lacking the lysine–threonine–serine (KTS) insert (ZF - KTS) can bind to the majority of WT1 consensus sites throughout the WT1 promoter region, while the ZF containing the insert (ZF + KTS) form only binds to sites in the proximal promoter. The abundances of endogenous WT1 mRNA and protein were markedly decreased following the stable expression of ZF - KTS in breast cancer cells. The expressions of WT1 target genes, including c-myc, Bcl-2, amphiregulin and TERT, were similarly suppressed by ZF - KTS. Moreover, WT1–ZF - KTS abrogated the transcriptional activation of c-myc mediated by all four predominant isoforms of WT1 (including or lacking alternatively spliced exons 5 and 9). Finally, WT1–ZF - KTS inhibited colony formation and cell division, but induced apoptosis in MCF-7 cells. Conclusion Our observations strongly argue that the WT1–ZF plasmid behaves as a dominant-negative regulator of the endogenous WT1 in breast cancer cells. The inhibition on proliferation of breast cancer cells by WT1–ZF - KTS provides a potential candidate of gene therapy for breast cancer

    PAX2 Regulates ADAM10 Expression and Mediates Anchorage-Independent Cell Growth of Melanoma Cells

    Get PDF
    PAX transcription factors play an important role during development and carcinogenesis. In this study, we investigated PAX2 protein levels in melanocytes and melanoma cells by Western Blot and immunofluorescence analysis and characterized the role of PAX2 in the pathogenesis of melanoma. In vitro we found weak PAX2 protein expression in keratinocytes and melanocytes. Compared to melanocytes increased PAX2 protein levels were detectable in melanoma cell lines. Interestingly, in tissue sections of melanoma patients nuclear PAX2 expression strongly correlated with nuclear atypia and the degree of prominent nucleoli, indicating an association of PAX2 with a more atypical cellular phenotype. In addition, with chromatin immunoprecipitation assay, PAX2 overexpression and PAX2 siRNA we present compelling evidence that PAX2 can regulate ADAM10 expression, a metalloproteinase known to play important roles in melanoma metastasis. In human tissue samples we found co-expression of PAX2 and ADAM10 in melanocytes of benign nevi and in melanoma cells of patients with malignant melanoma. Importantly, the downregulation of PAX2 by specific siRNA inhibited the anchorage independent cell growth and decreased the migratory and invasive capacity of melanoma cells. Furthermore, the downregulation of PAX2 abrogated the chemoresistance of melanoma cells against cisplatin, indicating that PAX2 expression mediates cell survival and plays important roles during melanoma progression

    New highlights on stroma–epithelial interactions in breast cancer

    Get PDF
    Although the stroma in which carcinomas arise has been previously regarded as a bystander to the clonal expansion and acquisition of malignant characteristics of tumor cells, it is now generally acknowledged that stromal changes are required for the establishment of cancer. In the present article, we discuss three recent publications that highlight the complex role the stroma has during the development of cancer and the potential for targeting the stroma by therapeutic approaches
    corecore